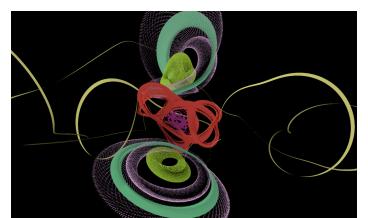
Introduction to the Dynamics of Rational Surface Automorphisms

Eric Bedford

Stony Brook University



Notation and terminology: Projective space, rational maps projective space: $\mathbb{P}^2 = \{ [x_0 : x_1 : x_2] = [\lambda x_0 : \lambda x_1 : \lambda x_2], \lambda \neq 0 \}$

rational map $f = [f_0 : f_1 : f_2] : \mathbb{P}^2 \dashrightarrow \mathbb{P}^2$, f_j polynomials of same degree d, no common factor. We define the *degree* of the map as:

$$\deg(f) := d = \deg(f_0) = \deg(f_1) = \deg(f_2)$$

Iteration is "normal", except that we need to cancel common factors each time. In fact, when we do this, the degree can drop by a lot – even to 1. Thus determining degree growth is not obvious.

We may view $\mathbb{C}^2 \subset \mathbb{P}^2$ via the map $(x, y) \mapsto [1 : x : y]$. Any rational map may also be given by $R = \left(\frac{P_1}{Q_1}, \frac{P_2}{Q_2}\right) : \mathbb{C}^2 \dashrightarrow \mathbb{C}^2$

f is birational if it has an inverse f^{-1} , $f \circ f^{-1} = id$ where defined.

Dynamical degree

Behavior under composition: $\deg(f \circ g) \leq \deg(f)\deg(g)$

Equality may fail: Cremona Involution

$$\sigma(x,y) = \left(\frac{1}{x},\frac{1}{y}\right) : \mathbb{C}^2 \dashrightarrow \mathbb{C}^2$$

$$\mathsf{deg}(\sigma) = 2, \quad \mathsf{deg}(\sigma^2) = 1$$

As a map of \mathbb{P}^2 , this is written $\sigma([x_0 : x_1 : x_2]) = [x_1x_2, x_0x_2, x_0x_1]$,

$$\sigma^2 = \mathsf{id} = x_0 x_1 x_2 [x_0 : x_1 : x_2]$$

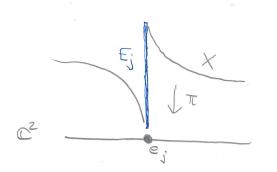
deg(f) is not invariant under birational conjugacy, so we define

$$\mathsf{ddeg}(f) = \lim_{n \to \infty} \left(\mathsf{deg}(f^n) \right)^{1/n}$$

Define Rational Surface Automorphism by Theorem

Theorem (Nagata)

Let $F : X \to X$ be a rational surface automorphism such that the action of F^* on $H^2(X)$ has infinite order. Then there is an (iterated) blowup $\pi : X \to \mathbb{P}^2$ and a birational map $f : \mathbb{P}^2 \dashrightarrow \mathbb{P}^2$ such that $\pi \circ F = f \circ \pi$ (or $F = \pi^{-1} \circ f \circ \pi$).



Dynamical degrees: Salem or Pisot

Let $\lambda > 1$ be an algebraic number.

 λ is *Salem* if its Galois conjugates are $1/\lambda$, or modulus 1.

 λ is a *Pisot* if its Galois conjugates all have modulus < 1.

Theorem (Diller-Favre, Blanc-Cantat)

Let $f : \mathbb{P}^2 \dashrightarrow \mathbb{P}^2$ be a birational map with ddeg(f) > 1. Then f induces a rational surface map if and only if ddeg(f) is a Salem number. Otherwise, it is a Pisot number. In either case, it is algebraic. If f is birationally conjugate to an automorphism, then ddeg(f) is irrational.

In later discussion, the automorphisms will be "parametrized" by the Galois conjugates of Salem numbers.

Why consider only rational surface X?

Theorem (Cantat)

Let F be an automorphism of a compact, complex surface X. If F^* has infinite order, then (after possible blow-downs) either:

- $X = \mathbb{T}^2$ is a complex torus.
- X is K3 (or certain quotients).
- X is rational.

The examples we discuss in this talk will all be defined over number fields. Rational surfaces come in arbitrarily large families, and not necessarily defined over number fields.

Theorem (B-Kim)

For any k, there are k-parameter families (not isotrivial) $F_{\alpha} = F_{\alpha_1,...,\alpha_k} \in Aut(X_{\alpha}), \ \alpha_j \in \mathbb{C}$ with $ddeg(F_{\alpha}) > 1$.

Summary of general dynamical properties: 1

We let $F : X \to X$ be a rational surface automorphism with $\lambda := \operatorname{ddeg}(F) > 1$. Let β be a Kähler form on X with $\int \beta \wedge \beta = 1$.

▶ There exists a unique $\Theta^{\pm} \in H^2(X; \mathbb{C})$ such that $\Theta^{\pm} \cdot \beta = 1$ and

$$F^*(\Theta^{\pm}) = \lambda^{\pm 1} \Theta^{\pm}$$

 $\text{Comment: } \Theta^{\pm} \cdot \Theta^{\pm} = 0$

There is a unique positive, closed current T[±] in the class Θ[±].
 Further, this current is obtained as

$$\frac{1}{\lambda^n} (F^*)^{\pm n} \beta \to T^{\pm}$$

There is a continuous function g^{\pm} such that $T^{\pm} = \Theta^{\pm} + dd^{c}g^{\pm}$.

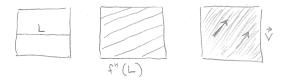
Example of the torus (not rational surface)

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} : \mathbb{T}^2 \to \mathbb{T}^2$$

L is an oriented horizontal line. λ is the expanding eigenvalue of *A*, and \vec{v} is the corresponding eigenvector.

Entropy $\log(\lambda)$ corresponds to the length growth: $\text{Length}(A^n(L)) \sim \lambda^n$

The normalized current $\lambda^{-n}[A^n(L)]$ converges to a constant times $\vec{v} dArea$. (*k*-dimensional currents are represented by a *k*-vector times a distribution.)



Summary of general dynamical properties: 2

- $\mu := T^+ \wedge T^-$ is the unique measure of maximal entropy $= \log \lambda$.
- $\blacktriangleright~\mu$ gives the asymptotic distribution of saddle (periodic) points.
- If p is a saddle (periodic) point, and if W^{s/u}(p) is not algebraic, then p ∈ supp(µ).
- $|Lyapunov exponents| \ge \frac{\log(\lambda)}{2} > 0$
- T^{\pm} has laminar structure given by $\mathcal{W}^{s/u}$
- Julia sets J[±] = supp(T[±]) (modulo a finite number of invariant algebraic curves)

Problem

Is it ever the case that $supp(\mu)$ is a hyperbolic set? Or is not?

Problem

Is there some rational surface map $F : X \to X$ for which we can describe J^{\pm} or J explicitly? For instance, can we get a horseshoe-like map?

Simpliest maps:
$$f_{a,b}(x,y) = \left(y, rac{y+a}{x+b}
ight)$$

Theorem (B-Kim, McMullen)

1. $f_{a,b}$ gives a surface automorphism \Leftrightarrow there exists $n \ge 0$ such that

$$f_{a,b}^n(-a,0) = (-b,-a)$$

2. This equation has solutions for every n.

3. $ddeg(f_{a,b}) > 1 \leftrightarrow n \geq 7$.

Theorem (B-Kim)

There exist automorphisms $f_{a,b}$ without invariant curve.

However, the assumption of an invariant curve will make it easier to discuss the existence of automorphisms.

General birational maps of degree 2

Theorem

A birational map of degree 2 is linearly conjugate to $L \circ \iota$, where $L \in PGL(3, \mathbb{C})$, and ι denotes one of the 3 involutions: σ , ρ , τ .

Let $f = L \circ \sigma$ be a rational surface automorphism. We define *orbit data* $((n_0, n_1, n_2), \pi)$, where π is a permutation of $\{0, 1, 2\}$, and

$$\Sigma_{j} := \{x_{j} = 0\} \mapsto p_{j,1} := L(e_{j}) \mapsto p_{j,2} \mapsto \cdots \mapsto p_{j,n_{j-1}} \mapsto e_{\pi(j)} = p_{j,n_{j}}$$

Facts: (1) $f_{a,b}$ is conjugate to $L \circ \sigma$ and has orbit data ((1,1,8), cyclic) (2) If f has positive entropy, then $n_1 + n_2 + n_3 \ge 10$. Automorphisms with invariant curves: Diller approach

Let $\varphi:\mathbb{C} o\mathcal{C},\ \varphi(\zeta)=(\zeta,\zeta^3)$ be the cubic with a cusp at infinity.

We start with birational maps of degree 2.

Theorem

For each $\lambda \in \mathbb{C} - \{0\}$, there are 3×3 matrices $S = S_{\lambda}$, $T = T_{\lambda}$ such that $f_{\lambda} := S \circ \sigma \circ T^{-1}$ preserves C, and

$$f_{\lambda}|_{\mathcal{C}}:\zeta\mapsto\lambda(\zeta-1)+1$$

The strategy is to find λ such that the birational map f_{λ} is actually a rational surface automorphism. If this is the case, then all blowup points will be in C. Thus any point of blowup will be of the form $\varphi(\zeta)$, and it becomes the problem of solving for $\zeta \in \mathbb{C}$.

Quadratic maps with invariant curves: Existence

Theorem (Diller)

Let orbit data $((n_0, n_1, n_2), \pi)$ be given. Except for some specific cases, there is an automorphism $f = L_1 \circ \sigma \circ L_2$ preserving C which realizes these data. Further, $f|_C : \zeta \mapsto \delta(\zeta - 1) + 1$, where δ is any Galois conjugate to ddeg(f).

Referring to the previous picture, the points of indeterminacy are $T(e_j) = \varphi(\zeta_j^-)$, and the critical image points are $S(e_j) = p_{j,1} = \varphi(\zeta_j^+)$. Using the fact that $\varphi^n(\zeta) = \delta^n(\zeta - 1) + 1$, we are able to solve algebraically for the values of δ and ζ_j^{\pm} , j = 0, 1, 2.

This produces a Salem polynomial for δ ; the ζ_j^+ and ζ_j^- are rational functions of δ .

Theorem (Summary)

The Galois conjugates of d = ddeg(f) are: d, d^{-1} , and $|\delta_1| = \cdots = |\delta_{n'}| = 1$, and each of these Galois conjugates gives an automorphism.

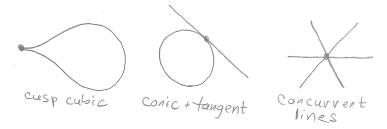
Quadratic maps with invariant curves: Fatou set

The forward/backward *Fatou set* \mathcal{F}^{\pm} is where the iterates of $f^{\pm 1}$ are locally equicontinuous.

Theorem

If there is an invariant curve, then the Fatou set is nonempty.

The possibilities for invariant curves (Diller paper covers all three):



For instance: In the case of the cusp cubic, the cusp point is fixed and has multipliers δ^{-2} , δ^{-3} . Since δ is Galois conjugate of a Salem number, the map is linearizable in a neighborhood of the cusp point. Thus it belongs to \mathcal{F}^+ or \mathcal{F}^- (or both, if $|\delta| = 1$).

Is the other fixed point linearizable?

There are two fixed points on the cusp cubic C. The multipliers at the other fixed point are δ and $\delta^{3-n_1-n_2-n_3}$, so there is a resonance here.

In computer pictures, it seems that the Fatou set contains \mathcal{C} , which suggests that the fixed point is linearizable.

Problem

Can f be linearized at this fixed point?

If so, then there is a rank 1 Fatou component Ω containing the whole curve C. It follows that the (meromorphic) volume form is bounded on $X - \Omega$.

If so, we conclude that $X - \Omega$ has finite volume, so in the conservative case, *all Fatou components are periodic*.

Invariant volume form (with poles)

If $C = \{p(x, y) = 0\}$ is an invariant curve, then

$$\eta := rac{dx \wedge dy}{p(x,y)}$$
 is invariant: $f^*\eta = c \eta$ for some $c \in \mathbb{C}$

For the maps f_{δ} constructed in the previous Theorem, we have $c = \delta$. These maps are either conservative or dissipative.

Theorem (McMullen, B-Kim)

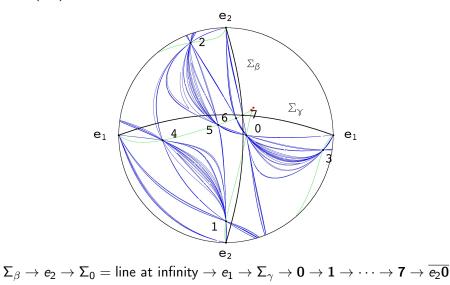
Suppose that C is invariant and $\delta = ddeg(f) > 1$. Then the cusp at infinity is an attracting fixed point and its basin \mathcal{B} has full volume in the sense that $Vol_{\eta}(X - \mathcal{B}) = 0$. Since δ is real, f induces a diffeomorphism of the real points X_R . The cusp point has a real basin \mathcal{B}_R inside X_R , and $X_R - \mathcal{B}_R$ has zero area.

Problem

Describe the attractors A := X - B and $A_R := X_R - A_R$.

Attempt to draw the current of an attractor in \mathbb{RP}^2

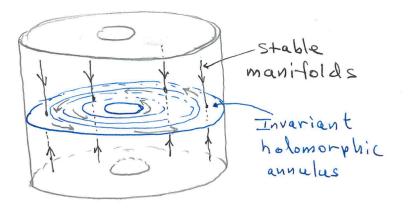
Invariant cubic in green. Repeller is the cusp (red), other fixed point on cubic (red). Blue is forward iterate of a line.



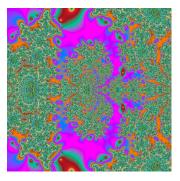
Model: Attracting Herman ring

For dissipative maps, a rotational annulus or disk will be normally attracting.

 $\Omega = A \times \mathbb{C}$; irrational rotation in the annulus \times contraction in \mathbb{C} Can such a Fatou component occur for either a complex Hénon map or a rational surface automorphism?



Ushiki: Computer "Example" Orbit data ((3,3,4), π), π = cyclic also ((2,3,5), cyclic) Demonstrate this with Ushiki's software.



Left: Complex slice of Julia set. Right: Orbits inside "Herman ring"?

Problem

Can the existence of this apparent Herman ring be proved mathematically?

How to "draw" or "compute" the Fatou set? Digression: Hénon maps Have continuous functions $G^{\pm} = \lim_{n \to \infty} \frac{1}{d^n} \log^+ ||f^{\pm n}||$ on \mathbb{C}^2 . $J^{\pm} = \partial K^{\pm}, J = J^+ \cap J^-, K = K^+ \cap K^-$, and the forward/backward

 $J^{\pm} = \partial K^{\pm}$, $J = J^{\pm} \cap J^{-}$, $K = K^{\pm} \cap K^{-}$, and the forward/backwar Fatou sets are $\mathcal{F}^{\pm} = \mathbb{C}^2 - J^{\pm}$.

Theorem (Friedland-Milnor)

For volume-decreasing (dissipative) Hénon maps, $J^- = \partial K^- = K^-$. For volume-preserving (conservative) Hénon maps, $int(K^+) = int(K^-) = int(K)$.

In the hyperbolic, dissipative case, we have $int(\mathcal{K}^+) = \mathcal{B}_1 \cup \cdots \cup \mathcal{B}_n$, union of basins of attraction. Thus in the hyperbolic, dissipative case, the sets \mathcal{F}^{\pm} are "computable".

Problem

Is the Fatou set "computable" in other cases? Is the statement "Fatou set $\neq \emptyset$ " "computable" for a conservative map?

Rational surface automorphisms

Theorem (Dinh-Sibony, Moncet, Ueda)

X – support($T^+ + T^-$) = $\mathcal{F}^+ \cap \mathcal{F}^-$ (modulo an invariant algebraic curve).

In this case, we have no ${\it G}^{\pm}$, so we work with the Lyapunov exponent

$$\Lambda^{\pm}(p) := \limsup_{n \to \infty} \frac{1}{n} \log ||Df^{\pm n}(p)||$$

Clearly, $\Lambda^{\pm} = 0$ on \mathcal{F}^{\pm} .

Theorem (Dujardin)

If
$$\mu = T^+ \wedge T^-$$
, and the dynamical degree $\lambda > 1$,
then $\Lambda^{\pm}(p) \geq \frac{\log(\lambda)}{2}$ for μ a.e. p.

Theorem

$$\mathcal{F}^+ \cap \mathcal{F}^- = interior(\{\Lambda^+ + \Lambda^- < \frac{\log(\lambda)}{2}\})$$

(modulo an invariant algebraic curve).

Conservative (Volume preserving) maps

Let $\Omega \subset \mathcal{F}^+ \cap \mathcal{F}^-$ be invariant fixed (periodic) component.

 $\mathcal{G} = \{ \text{normal limits of subsequences } f^{n_j} \rightarrow g : \Omega \rightarrow \Omega \}$

Theorem (B-Kim)

 \mathcal{G}_0 (connected component of identity in \mathcal{G}) $\cong \mathbb{T}^{\rho}$, $\rho = 1$ or 2.

The Fatou component Ω is a rotation domain of rank ρ . It seems that rank 2 is the "generic" case. The Fatou component arising from multipliers δ^{-2} , δ^{-3} at the cusp point, which was noted earlier, has rank = 1.

Problem

What sorts of rotation domains Ω can exist? For instance, in the Hénon case, the action on a rank 2 rotation domain is conjugate to a rotation on a Reinhardt domain. Is there a similar model (e.g. canonical toric manifold) for the maps f_{δ} ?

Theorem (C.L. Siegel)

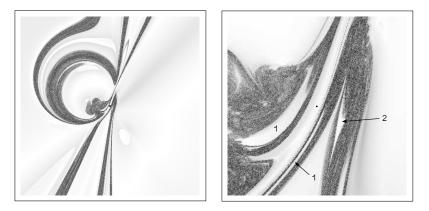
f may be linearized at a fixed (periodic) point p_0 such that the multipliers of $Df(p_0)$ are sufficiently Diophantine.

Theorem (McMullen, B-Kim)

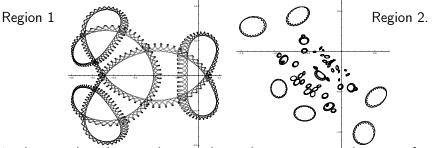
For every dynamical degree in the $f_{a,b} = (y, (y + a)/(x + b))$ family, there is an automorphism with a rank 2 rotation domain, because of fixed (periodic) points with suitable multipliers.

Problem

Is it possible for rotation domains to arise for some reason other than linearization at a fixed point? Can there exist rotation domains without fixed points? Ushiki example: Another analogue of a Herman ring? We choose f_{δ} for a map $f_{a,b}(x, y) = \left(y, \frac{y+a}{x+b}\right)$ with $|\delta| = 1$. Orbit data: ((1,1,8),cyclic).



Complex slice of the Julia set (black) and the Fatou set (white). Detail on right. We will see orbits of points from regions 1 and 2.



Looking at the orbits, we have evidence that regions 1 and 2 are in fact in the Fatou set. If this is the case, then these regions are rotation domains with rank either 1 or 2. The closure of a generic point of an invariant Fatou component will be a (real) torus of dimension ρ . The pictures suggests that region 1 is invariant and has rank 2.

The fixed points of f_{δ} consist of the two fixed points on the invariant curve (in a domain of rank 1), as well as two other points, which are saddles. Thus, region 1 cannot contain a fixed point.

Problem

Can this be proved mathematically?

Invitation - and another picture by Ushiki

Study the "1-parameter" family of rational surface automorphisms

$$f_{\delta} = S \circ \sigma \circ T^{-1}$$

that preserve a cubic C.

This special quadratic family $\{f_{\delta}\}$ should be more accessible than the general case, but it contains examples that are nontrivial and interesting.

