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Notation and terminology: Projective space, rational maps

projective space: P2 = {[x0 : x1 : x2] = [λx0 : λx1 : λx2], λ 6= 0}

rational map f = [f0 : f1 : f2] : P2 99K P2, fj polynomials of same degree d ,
no common factor. We define the degree of the map as:

deg(f ) := d = deg(f0) = deg(f1) = deg(f2)

Iteration is “normal”, except that we need to cancel common factors each
time. In fact, when we do this, the degree can drop by a lot – even to 1.
Thus determining degree growth is not obvious.

We may view C2 ⊂ P2 via the map (x , y) 7→ [1 : x : y ]. Any rational map
may also be given by R =

(
P1
Q1
, P2

Q2

)
: C2 99K C2

f is birational if it has an inverse f −1, f ◦ f −1 = id where defined.



Dynamical degree
Behavior under composition: deg(f ◦ g) ≤ deg(f )deg(g)

Equality may fail: Cremona Involution

σ(x , y) =

(
1
x
,
1
y

)
: C2 99K C2

deg(σ) = 2, deg(σ2) = 1

As a map of P2, this is written σ([x0 : x1 : x2]) = [x1x2, x0x2, x0x1],

σ2 = id = x0x1x2[x0 : x1 : x2]

deg(f ) is not invariant under birational conjugacy, so we define

ddeg(f ) = lim
n→∞

(deg(f n))1/n



Define Rational Surface Automorphism by Theorem
Theorem (Nagata)

Let F : X → X be a rational surface automorphism such that the action of
F ∗ on H2(X ) has infinite order. Then there is an (iterated) blowup
π : X → P2 and a birational map f : P2 99K P2 such that π ◦ F = f ◦ π (or
F = π−1 ◦ f ◦ π).



Dynamical degrees: Salem or Pisot
Let λ > 1 be an algebraic number.
λ is Salem if its Galois conjugates are 1/λ, or modulus 1.
λ is a Pisot if its Galois conjugates all have modulus < 1.

Theorem (Diller-Favre, Blanc-Cantat)

Let f : P2 99K P2 be a birational map with ddeg(f ) > 1. Then f induces a
rational surface map if and only if ddeg(f ) is a Salem number. Otherwise,
it is a Pisot number. In either case, it is algebraic. If f is birationally
conjugate to an automorphism, then ddeg(f ) is irrational.

In later discussion, the automorphisms will be “parametrized” by the Galois
conjugates of Salem numbers.



Why consider only rational surface X?

Theorem (Cantat)

Let F be an automorphism of a compact, complex surface X . If F ∗ has
infinite order, then (after possible blow-downs) either:

I X = T2 is a complex torus.
I X is K3 (or certain quotients).
I X is rational.

The examples we discuss in this talk will all be defined over number fields.
Rational surfaces come in arbitrarily large families, and not necessarily
defined over number fields.

Theorem (B-Kim)

For any k, there are k-parameter families (not isotrivial)
Fα = Fα1,...,αk ∈ Aut(Xα), αj ∈ C with ddeg(Fα) > 1.



Summary of general dynamical properties: 1

We let F : X → X be a rational surface automorphism with
λ := ddeg(F ) > 1. Let β be a Kähler form on X with

∫
β ∧ β = 1.

I There exists a unique Θ± ∈ H2(X ;C) such that Θ± · β = 1 and

F ∗(Θ±) = λ±1Θ±

Comment: Θ± ·Θ± = 0
I There is a unique positive, closed current T± in the class Θ±.

Further, this current is obtained as

1
λn (F ∗)±nβ → T±

There is a continuous function g± such that T± = Θ± + dd cg±.



Example of the torus (not rational surface)

A =

(
2 1
1 1

)
: T2 → T2

L is an oriented horizontal line. λ is the expanding eigenvalue of A, and ~v
is the corresponding eigenvector.

Entropy log(λ) corresponds to the length growth: Length(An(L)) ∼ λn

The normalized current λ−n[An(L)] converges to a constant times ~v dArea.
(k-dimensional currents are represented by a k-vector times a distribution.)



Summary of general dynamical properties: 2
I µ := T+ ∧ T− is the unique measure of maximal entropy = log λ.
I µ gives the asymptotic distribution of saddle (periodic) points.
I If p is a saddle (periodic) point, and if W s/u(p) is not algebraic, then

p ∈ supp(µ).
I |Lyapunov exponents| ≥ log(λ)

2 > 0
I T± has laminar structure given by Ws/u

I Julia sets J± = supp(T±) (modulo a finite number of invariant
algebraic curves)

Problem
Is it ever the case that supp(µ) is a hyperbolic set? Or is not?

Problem
Is there some rational surface map F : X → X for which we can describe
J± or J explicitly? For instance, can we get a horseshoe-like map?



Simpliest maps: fa,b(x , y) =
(
y , y+a

x+b

)
Theorem (B-Kim, McMullen)

1. fa,b gives a surface automorphism ⇔ there exists n ≥ 0 such that

f n
a,b(−a, 0) = (−b,−a)

2. This equation has solutions for every n.
3. ddeg(fa,b) > 1 ↔ n ≥ 7.

Theorem (B-Kim)

There exist automorphisms fa,b without invariant curve.

However, the assumption of an invariant curve will make it easier to discuss
the existence of automorphisms.



General birational maps of degree 2

Theorem
A birational map of degree 2 is linearly conjugate to L ◦ ι, where
L ∈ PGL(3,C), and ι denotes one of the 3 involutions: σ, ρ, τ .

Let f = L ◦ σ be a rational surface automorphism. We define orbit data
((n0, n1, n2), π), where π is a permutation of {0, 1, 2}, and

Σj := {xj = 0} 7→ pj ,1 := L(ej) 7→ pj ,2 7→ · · · 7→ pj ,nj−1 7→ eπ(j) = pj ,nj

Facts: (1) fa,b is conjugate to L ◦ σ and has orbit data ((1,1,8), cyclic)
(2) If f has positive entropy, then n1 + n2 + n3 ≥ 10.



Automorphisms with invariant curves: Diller approach

Let ϕ : C→ C, ϕ(ζ) = (ζ, ζ3) be the cubic with a cusp at infinity.

We start with birational maps of degree 2.

Theorem
For each λ ∈ C− {0}, there are 3× 3 matrices S = Sλ, T = Tλ such that
fλ := S ◦ σ ◦ T−1 preserves C, and

fλ|C : ζ 7→ λ(ζ − 1) + 1

The strategy is to find λ such that the birational map fλ is actually a
rational surface automorphism. If this is the case, then all blowup points
will be in C. Thus any point of blowup will be of the form ϕ(ζ), and it
becomes the problem of solving for ζ ∈ C.



Quadratic maps with invariant curves: Existence
Theorem (Diller)

Let orbit data ((n0, n1, n2), π) be given. Except for some specific cases,
there is an automorphism f = L1 ◦ σ ◦ L2 preserving C which realizes these
data. Further, f |C : ζ 7→ δ(ζ − 1) + 1, where δ is any Galois conjugate to
ddeg(f ).

Refering to the previous picture, the points of indeterminacy are
T (ej) = ϕ(ζ−j ), and the critical image points are S(ej) = pj ,1 = ϕ(ζ+j ).
Using the fact that ϕn(ζ) = δn(ζ − 1) + 1, we are able to solve
algebraically for the values of δ and ζ±j , j = 0, 1, 2.

This produces a Salem polynomial for δ; the ζ+j and ζ−j are rational
functions of δ.

Theorem (Summary)

The Galois conjugates of d = ddeg(f ) are:
d , d−1, and |δ1| = · · · = |δn′ | = 1, and each of these Galois conjugates
gives an automorphism.



Quadratic maps with invariant curves: Fatou set
The forward/backward Fatou set F± is where the iterates of f ±1 are
locally equicontinuous.

Theorem
If there is an invariant curve, then the Fatou set is nonempty.

The possibilities for invariant curves (Diller paper covers all three):

For instance: In the case of the cusp cubic, the cusp point is fixed and
has multipliers δ−2, δ−3. Since δ is Galois conjugate of a Salem number,
the map is linearizable in a neighborhood of the cusp point. Thus it
belongs to F+ or F− (or both, if |δ| = 1).



Is the other fixed point linearizable?

There are two fixed points on the cusp cubic C. The multipliers at the
other fixed point are δ and δ3−n1−n2−n3 , so there is a resonance here.

In computer pictures, it seems that the Fatou set contains C, which
suggests that the fixed point is linearizable.

Problem
Can f be linearized at this fixed point?

If so, then there is a rank 1 Fatou component Ω containing the whole curve
C. It follows that the (meromorphic) volume form is bounded on X − Ω.

If so, we conclude that X − Ω has finite volume, so in the conservative
case, all Fatou components are periodic.



Invariant volume form (with poles)
If C = {p(x , y) = 0} is an invariant curve, then

η :=
dx ∧ dy
p(x , y)

is invariant: f ∗η = c η for some c ∈ C

For the maps fδ constructed in the previous Theorem, we have c = δ.
These maps are either conservative or dissipative.

Theorem (McMullen, B-Kim)

Suppose that C is invariant and δ = ddeg(f ) > 1. Then the cusp at infinity
is an attracting fixed point and its basin B has full volume in the sense that
Volη(X − B) = 0. Since δ is real, f induces a diffeomorphism of the real
points XR . The cusp point has a real basin BR inside XR , and XR − BR
has zero area.

Problem
Describe the attractors A := X − B and AR := XR −AR .



Attempt to draw the current of an attractor in RP2

Invariant cubic in green. Repeller is the cusp (red), other fixed point on
cubic (red). Blue is forward iterate of a line.

Σβ → e2 → Σ0 = line at infinity→ e1 → Σγ → 0→ 1→ · · · → 7→ e20



Model: Attracting Herman ring
For dissipative maps, a rotational annulus or disk will be normally
attracting.
Ω = A× C; irrational rotation in the annulus × contraction in C
Can such a Fatou component occur for either a complex Hénon map or a
rational surface automorphism?



Ushiki: Computer “Example”
Orbit data ((3,3,4),π), π = cyclic also ((2,3,5), cyclic)
Demonstrate this with Ushiki’s software.

Left: Complex slice of Julia set. Right: Orbits inside “Herman ring”?

Problem
Can the existence of this apparent Herman ring be proved mathematically?



How to “draw” or “compute” the Fatou set?
Digression: Hénon maps
Have continuous functions G± = limn→∞

1
dn log+ ||f ±n|| on C2.

J± = ∂K±, J = J+ ∩ J−, K = K+ ∩ K−, and the forward/backward
Fatou sets are F± = C2 − J±.

Theorem (Friedland-Milnor)

For volume-decreasing (dissipative) Hénon maps, J− = ∂K− = K−.
For volume-preserving (conservative) Hénon maps,
int(K+) = int(K−) = int(K ).

In the hyperbolic, dissipative case, we have int(K+) = B1 ∪ · · · ∪ Bn, union
of basins of attraction. Thus in the hyperbolic, dissipative case, the sets
F± are “computable”.

Problem
Is the Fatou set “computable” in other cases?
Is the statement “Fatou set 6= ∅” “computable” for a conservative map?



Rational surface automorphisms
Theorem (Dinh-Sibony, Moncet, Ueda)

X − support(T+ + T−) = F+ ∩F− (modulo an invariant algebraic curve).

In this case, we have no G± , so we work with the Lyapunov exponent

Λ±(p) := lim sup
n→∞

1
n
log ||Df ±n(p)||

Clearly, Λ± = 0 on F±.

Theorem (Dujardin)

If µ = T+ ∧ T−, and the dynamical degree λ > 1,
then Λ±(p) ≥ log(λ)

2 for µ a.e. p.

Theorem
F+ ∩ F− = interior({Λ+ + Λ− < log(λ)

2 })
(modulo an invariant algebraic curve).



Conservative (Volume preserving) maps
Let Ω ⊂ F+ ∩ F− be invariant fixed (periodic) component.

G = {normal limits of subsequences f nj → g : Ω→ Ω}

Theorem (B-Kim)

G0 (connected component of identity in G) ∼= Tρ, ρ = 1 or 2.

The Fatou component Ω is a rotation domain of rank ρ. It seems that
rank 2 is the “generic” case. The Fatou component arising from multipliers
δ−2, δ−3 at the cusp point, which was noted earlier, has rank = 1.

Problem
What sorts of rotation domains Ω can exist? For instance, in the Hénon
case, the action on a rank 2 rotation domain is conjugate to a rotation on
a Reinhardt domain. Is there a similar model (e.g. canonical toric
manifold) for the maps fδ?



Existence of rotation domains: Fixed points

Theorem (C.L. Siegel)

f may be linearized at a fixed (periodic) point p0 such that the multipliers
of Df (p0) are sufficiently Diophantine.

Theorem (McMullen, B-Kim)

For every dynamical degree in the fa,b = (y , (y + a)/(x + b)) family, there
is an automorphism with a rank 2 rotation domain, because of fixed
(periodic) points with suitable multipliers.

Problem
Is it possible for rotation domains to arise for some reason other than
linearization at a fixed point?
Can there exist rotation domains without fixed points?



Ushiki example: Another analogue of a Herman ring?
We choose fδ for a map fa,b(x , y) =

(
y , y+a

x+b

)
with |δ| = 1. Orbit data:

((1,1,8),cyclic).

1

1

2

Complex slice of the Julia set (black) and the Fatou set (white). Detail on
right. We will see orbits of points from regions 1 and 2.



Region 1 Region 2.

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.1

-0.4

-0.2

0.2

0.4

-1.5 -1.0 -0.5 0.5

-1.0

-0.5

0.5

Looking at the orbits, we have evidence that regions 1 and 2 are in fact in
the Fatou set. If this is the case, then these regions are rotation domains
with rank either 1 or 2. The closure of a generic point of an invariant
Fatou component will be a (real) torus of dimension ρ. The pictures
suggests that region 1 is invariant and has rank 2.
The fixed points of fδ consist of the two fixed points on the invariant curve
(in a domain of rank 1), as well as two other points, which are saddles.
Thus, region 1 cannot contain a fixed point.

Problem
Can this be proved mathematically?



Invitation – and another picture by Ushiki
Study the “1-parameter" family of rational surface automorphisms

fδ = S ◦ σ ◦ T−1

that preserve a cubic C.
This special quadratic family {fδ} should be more accessible than the
general case, but it contains examples that are nontrivial and interesting.




